Abstract

Irreversible adsorption of particles onto a flat surface as a consequence of sedimentation colloidal suspension has been studied by two simulation techniques: Brownian dynamics (BD) and stochastic rotation dynamics (SRD). The purpose of using both methods is to investigate the effect of hydrodynamic interactions on adsorption kinetics and structure of the first monolayer of sediment obtained from the sedimentation of a concentrated and monodisperse colloidal suspension. Three systems were studied, characterised by the Péclet numbers: 0.1, 1.0 and 10. To physically understand the kinetic behaviour, simulation results were analysed using a kinetic model based on chemical reactions. High values of jamming limit (θ∞ > 0.61) were obtained for both simulation techniques, with the SRD showing the highest figures (0.631) due to the hydrodynamics effect that takes into account the fluid backflow produced on particle sedimentation. A two-step adsorption mechanism was proposed based on the observed kinetic behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.