Abstract

Fe(III)-chitosan and Fe(III)-chitosan-CTAB composites were prepared using an ionotropic gelation method. Various techniques were used to analyze the morphology, structure, and property of the adsorbents, including SEM, EDS, FT-IR, XPS, and zeta potential. Compared with Fe(III)-chitosan, Fe(III)-chitosan-CTAB was more effective for As(V) adsorption at a wide range of pH (3.0-8.0). The adsorption of As(V) onto Fe(III)-chitosan and Fe(III)-chitosan-CTAB could reach equilibrium in 20min, and their maximum adsorption capacities were 33.85 and 31.69mgg‒1, respectively. The adsorption kinetics was best described by the pseudo-second-order model (R2 = 0.998 and 0.992), whereas the adsorption isotherm was fitted well by the Freundlich model (R2 = 0.963 and 0.987). The presence of H2PO4- significantly inhibited the adsorption of As(V) onto Fe(III)-chitosan and Fe(III)-chitosan-CTAB, and humic acid also led to a slight decrease in As(V) adsorption by Fe(III)-chitosan-CTAB. Over 94% of As(V) at the initial concentration of no more than 5mg L-1 was removed from real water by the two adsorbents. 1% (w/v) NaOH solution was determined to be the most suitable desorption agent. Fe(III)-chitosan and Fe(III)-chitosan-CTAB still maintained their initial adsorption capacities after five adsorption-desorption cycles. Based on different characterization results, both electrostatic attraction and surface complexation mechanisms played important roles in As(V) adsorption on Fe(III)-chitosan and Fe(III)-chitosan-CTAB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call