Abstract

Geotechnical seismic isolation has emerged as an efficient technique for mitigating the severe effects of earthquakes by providing smooth synthetic liners beneath foundations or between soil layers for dissipating seismic energy through sliding. This study investigates the efficacy of using a rubber mat and a natural coir mat as reinforcement materials within the soil to act as a seismic soil-isolation medium. A three-dimensional finite element simulation of five-storey buildings resting on raft foundations in soft soil with and without the soil-isolation mechanism has been performed. The reinforced soil-structure system was exposed to two different earthquake motions, such as the ground motions corresponding to the elastic design spectrum for Zone III as per the Indian standard code (IS 1893 (Part 1): 2016) and the Northridge earthquake (1994). The proposed study deals with the analysis of dynamic responses of buildings when the soil is reinforced with a coir mat and rubber mat under earthquake motions. The findings show that the seismic responses of low-rise buildings are significantly reduced by a novel technique proposed in this work to reinforce the soil with isolation materials in their mat form to reduce the seismic responses under earthquake loads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call