Abstract

Chemical cross-linking is an important step to grant satisfying properties to collagen-based materials. However, there are few comparative studies on crossing-linking of collagen-based fibrillar gels which are preferred biomaterials for similar properties to native tissues with different cross-linking agents. In this study, a fibrillar gel was fabricated with tilapia collagen and hyaluronic acid, and cross-linking conditions with EDC/NHS and genipin were discussed. Genipin gave gels much higher equilibrium cross-linking degree than EDC/NHS. ATR-FTIR and XPS showed EDC/NHS offered short-range cross-linking formed by amino and carboxyl groups in fibrils, while genipin induced long-range cross-linking by nucleophilic reaction through attack of amino groups in fibrils on carbon atoms at C-3 as well as ester groups in genipin, besides improved hydrogen bonds. XRD and SEM revealed the structural integrity of gels was strengthened after cross-linking, whereas fibril bundles disaggregated into thin fibrils. Consequently, swelling capacity and anti-degraded property were enhanced significantly, while thermal stability weakened. The fibrillar gels had good biocompatibility, but interestingly the appearance and migration of L929 fibroblasts were influenced by cross-linking degree. These results demonstrated that aquatic collagen-based fibrillar gel cross-linked by genipin had greater potential in biomaterials than EDC/NHS, whereas the cross-linking degree should be controlled.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call