Abstract
This paper evaluates four unsupervised Chinese word clustering methods, respectively maximum mutual information (MMI), function word (FW), high frequent word (HFW), and word cluster (WC). Two evaluation measures, part-of-speech (POS) precision and semantic precision, are employed. Testing results show that MMI reaches the best performance: 79.09% on POS precision and 49.75% on semantic precision, while the other three exceed 51.09% and 29.78% respectively. When applying word clusters generated by the methods mentioned above to the alignment-based automatic Chinese syntactic induction, the performance is further improved.Keywordsword clusteringsyntactic parsingalignment-based learningunsupervised learning
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have