Abstract
We comparatively study the electronic and thermoelectric properties of the monolayer, bilayer, and bulk CrI3 by density functional theory (DFT). We show that, according to the DFT calculation, those materials are magnetic semiconductors with ferromagnetic (FM) in monolayer, antiferromagnetic (AFM) in the bilayer, back to FM in the bulk structure. The thermoelectric properties of those materials are evaluated by using the Boltzmann transport equation (BTE) with a constant relaxation time approximation (RTA). At room temperature, we obtain bulk CrI3 has more significant electrical conductivity than monolayer and bilayer CrI3, while the Seebeck coefficient is similar that implied the bulk CrI3 has a better thermoelectric performance. In those systems, the optimum power factor is obtained by shifting the chemical potential of CrI3 by 1 eV with p-type doping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.