Abstract

Magnetic domain walls (DWs) in rare-earth-transition-metal (RE-TM) ferrimagnetic alloys can be used as information carriers in nonvolatile spintronic devices. Due to the rich combinations of RE-TM elements (such as CoGd, FeGd, CoTb, and FeTb in our case), it is intriguing to reveal the characteristics of DW dynamics in these wide choices of RE-TM compounds. Through a systematic study of the DW motion in thin films with different compositions of stacking order Pt(3 nm)/(Fe,Co)1-x(Gd,Tb)x(∼8 nm)/Ta(3 nm), we show that the partially compensated ferrimagnets CoGd and FeGd can exhibit a faster DW motion under various (in-plane and out-of-plane) magnetic fields driven by current-induced spin-orbit torques. In stark contrast with the fast motion of domain walls in Gd-based ferrimagnets, we find that the CoTb system exhibits much slower DW dynamics, and the FeTb system shows no motion, but evolved into a multi-domain state upon applying current pulses. Our results demonstrate that ferrimagnets CoGd and FeGd are more suitable candidates for achieving ultrafast DW motion, which could be useful for developing spintronic memory and logic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.