Abstract

We study the effect of surface roughness (SR) at the Si/SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> interfaces on transport properties of quasi 1-D and 2-D silicon nanodevices by comparing the electrical performances of nanowire (NW) and double-gate (DG) field-effect transistors. We address a full-quantum analysis based on the 3-D self-consistent solution of the Poisson-Schrödinger equation within the coupled mode-space nonequilibrium Green function (NEGF) formalism. The influence of SR scattering is also compared with phonon (PH) scattering addressed in the self-consistent Born approximation. We analyze transfer characteristics, current spectra, density of states, and low-field mobility of devices with different lateral size, showing that the dimensionality of the quasi 1-D and 2-D structures induces significant differences only for thin silicon thicknesses. Thin NWs are found more sensitive to the SR-induced variability of the threshold voltage with respect to the DG planar transistors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.