Abstract

Fault detection and identification are critical for the accurate maintenance and management of industrial machinery. In this regard, data-driven condition monitoring models play an important role in machinery fault diagnosis and management. This study investigates the applicability of various statistical machine learning systems in modeling large data in the condition monitoring of electric drive trains in supply chains. Large data is used to train linear discriminant analysis, K-nearest neighbor algorithm, naïve Bayes, kernel naïve Bayes, decision trees, and support vector machine to distinguish between eleven fault states. The experimental results from the testing data set show that the decision trees achieved 93.8% accuracy, followed by kernel naïve Bayes (91.9%), radial basis function (Gaussian) support vector machine (89.3%), linear discriminant analysis (84.5%), k-NN algorithm (80.5%), and Gaussian naïve Bayes (71.3%). Accordingly, the choice of statistical machine learning algorithm influences classification accuracy related to electric drive fault diagnosis. In addition, decision trees take only few seconds to learn and classify new instances from big data. This makes the selection of decision trees trivial for condition monitoring and management of electric drive trains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.