Abstract
Maintenance strategies are vital for industrial and manufacturing systems. This study considers a proactive maintenance strategy and emphasizes using analytics and data science. We propose an Explainable Artificial Intelligence (XAI) methodology for predictive maintenance. The proposed method utilizes a machine learning project cycle and Python libraries to interpret the results using the Local Interpretable Model-agnostic Explanations (LIME) method. We also introduce an early concept of spare parts management, presenting insights from predictive maintenance outcomes and providing explanations for decision-makers to enhance their understanding of the influential factors behind predictions. This study demonstrates that utilizing machine learning models in predictive maintenance is highly beneficial; however, the binary outcomes of these models can be misunderstood by decision-makers. Detailed explanations provided to decision-makers will directly impact maintenance decisions and improve spare part management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.