Abstract

PurposeIn this study, a second-order standard wave equation extended to a two-dimensional viscous wave equation with timely differentiated advection-diffusion terms has been solved by differential quadrature methods (DQM) using a modification of cubic B-spline functions. Two numerical schemes are proposed and compared to achieve numerical approximations for the solutions of nonlinear viscous wave equations.Design/methodology/approachTwo schemes are adopted to reduce the given system into two systems of nonlinear first-order partial differential equations (PDE). For each scheme, modified cubic B-spline (MCB)-DQM is used for calculating the spatial variables and their derivatives that reduces the system of PDEs into a system of nonlinear ODEs. The solutions of these systems of ODEs are determined by SSP-RK43 scheme. The CPU time is also calculated and compared. Matrix stability analysis has been performed for each scheme and both are found to be unconditionally stable. The results of both schemes have been extensively discussed and compared. The accuracy and reliability of the methods have been successfully tested on several examples.FindingsA comparative study has been carried out for two different schemes. Results from both schemes are also compared with analytical solutions and the results available in literature. Experiments show that MCB-DQM with Scheme II yield more accurate and reliable results in solving viscous wave equations. But Scheme I is comparatively less expensive in terms of CPU time. For MCB-DQM, less depository requirements lead to less aggregation of approximation errors which in turn enhances the correctness and readiness of the numerical techniques. Approximate solutions to the two-dimensional nonlinear viscous wave equation have been found without linearizing the equation. Ease of implementation and low computation cost are the strengths of the method.Originality/valueFor the first time, a comparative study has been carried out for the solution of nonlinear viscous wave equation. Comparisons are done in terms of accuracy and CPU time. It is concluded that Scheme II is more suitable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.