Abstract

Topical drug delivery offers improved therapeutic effect and reduced systemic adverse effects of the administered compounds. The present work was aimed at developing and comparing levocetirizine loaded polymeric nanoparticles and niosomal formulation(s), respectively, against dinitrochlorobenzene-induced atopic dermatitis animal model. The niosome and chitosan nanoparticle were developed and evaluated for particle size distribution, drug loading, and entrapment efficiency. The formulations were optimized through Box-Behnken design. The optimized formulations were dispersed in carbopol gel and evaluated for ex vivo permeation, retention, and in vivo studies. The optimized niosomes and chitosan nanoparticle exhibited a particle size range of 384.4 ± 64.3 nm and 382.7 ± 59.2 nm, drug loading of 18.99 ± 0.02% and 12.2 ± 1.6%, and entrapment efficiency of 46.63 ± 2.12% and 29.6 ± 1.6%, respectively. The permeation and retention studies displayed less permeation and significantly (p < 0.01) high retention percentage of LCZD by OPT-N gel when compared with OPT-CN gel. In in vivo studies revealed that OPT-N significantly (p < 0.05) reduces erythema score (from 3 to 1) and scratching frequency (70–25 scratches/20 min). OPT-N gel shows high entrapment efficiency and skin retention capacity of the drug along with better topical applicability and higher therapeutic efficacy. The OPT-N also manifested the maximum peripheral action of LCZD against AD as compared with optimized chitosan gel and plain LCZD gel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call