Abstract

Titanium dioxide has been in close examination for application development due to its high index of refraction and transparency across the visible range. One of the most active researches is hydrophilicity and photocatalysis in TiO 2 films. In this study, a close investigation to TiO 2 films' microstructural transformation was examined. A number of thin film samples were prepared by ion-assisted electron-beam evaporation at 200-nm nominal thickness, 2.0 Å/s deposition rate and 250°C deposition temperature. The varying parameter was the oxygen flow rate at 2, 4, 6 and 8 sccm. The films were eventually annealed for three hours in air atmosphere. The crystalline structures of as-deposited (ASD) and annealed films were deduced by variable-angle spectroscopic ellipsometry (VASE), and supported by X-ray diffractometry (XRD) and atomic force microscopy (AFM). Film characterization based on VASE is desirable in order to understand physical and optical characteristics of the films. Transmittance spectra were derived from UV/Vis spectrophotometer. It was found that all as-deposited films were all amorphous with low luminous transmittance. Higher oxygen flow rate during the deposition, however, resulted in sub-oxide TiO 2 film. With this film, annealing at 300 and 500°C were presumed as transition temperatures for amorphous-to-anatase and anatase-to-rutile phases, respectively. The luminous transmittance also increased and was found to be the highest at 75.75% at 400°C annealing. The optical energy band gap for this film also increased up to 3.26 eV at 600°C annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.