Abstract

We explore the structure effect on electrical characteristics of sub-10-nm double-gate metal–oxide–semiconductor field-effect transistors (DG MOSFETs). To quantitatively assess the nanoscale DG MOSFETs' characteristics, the on/off current ratio, subthreshold swing, threshold voltage <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$( V_ th)$</tex> , and drain-induced barrier-height lowering are numerically calculated for the device with different channel length ( <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$L$</tex> ) and the thickness of silicon film <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$( T_ si)$</tex> . Based on our two-dimensional density gradient simulation, it is found that, to maintain optimal device characteristics and suppress short channel effects (SCEs) for nanoscale DG MOSFETs, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$ T_ si$</tex> should be simultaneously scaled down with respect to <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$L$</tex> . From a practical fabrication point-of-view, a DG MOSFET with ultrathin <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$ T_ si$</tex> will suppress the SCE, but suffers the fabrication process and on-state current issues. Simulation results suggest that <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$ L/ T_ si geq 1$</tex> may provide a good alternative in eliminating SCEs of double-gate-based nanodevices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call