Abstract

A method is described for determining hexavalent chromium in high particulate-containing surface waters by sequential injection (SI). The relative performance of two membrane-based methods for sampling is compared. The first membrane approach is based on a commercial design known as the ‘supported capillary membrane sampler (SCMS)’ (Wolcott, D.K., US Pat. 5 317 932 (1995)) that uses tubular membranes; the second approach is based on a conventional parallel-plate dialyzer (PPD) design that uses planar membranes. The membranes are evaluated using the well-known colorimetric method for the determination of hexavalent chromium by complexation with 1,5-diphenylcarbazide (DPC). Thin-walled (∼200 μm) microporous (pore size ∼0.2 μm) polypropylene membranes are equilibrated with DPC during each sampling period. Formation of the DPC–Cr(VI) complex allows for efficient membrane transport; without the membrane, Cr(VI) transport decreases ∼90%. Factors optimized included reagent concentrations, sampling time, flow rate, and spectrophotometric conditions. Optimal conditions were 2.00 mM DPC and 0.100 M nitric acid for the reagent, and 600 and 900 s sampling times for the planar and tubular designs, respectively. The planar (PPD) design increased the sensitivity relative to the tubular (SCMS) design by ∼225%. The PPD-SI method was applied to the determination of dissolved Cr(VI) in high particulate-containing surface water samples. Figures of merit included a detection limit of <20 μg/l, precision of 1.1% R.S.D. at 100 μg/l ( n=4), and selectivity for dissolved Cr(VI) in several surface water samples with high levels of particulate matter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.