Abstract
The task of sentiment classification relies heavily on sentiment resources, including annotated lexicons and corpus. However, the sentiment resources in different languages are imbalanced. In particular, many reliable English resources are available on the Web, while reliable Chinese resources are scarce till now. Cross-lingual sentiment classification is a promising way for addressing the above problem by leveraging only English resources for Chinese sentiment classification. In this study, we conduct a comparative study to explore the challenges of cross-lingual sentiment classification. Different schemes for cross-lingual sentiment classification based on two dimensions have been compared empirically. Lastly, we propose to combine the different individual schemes into an ensemble. Experiment results demonstrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.