Abstract

Intensive research has been conducted to develop flexible piezoelectric pressure sensors, since selfpowering devices are advantageous for wearable electronic applications. Recently, two types of piezoelectric devices, ceramic-PDMS composite film and PVDF nanofiber mats, have drawn attention in the research community. Piezoelectric ceramics such as BaTiO3 (BTO) and PZT exhibit outstanding piezoelectric coefficients, while PDMS provides flexibility. In contrast, a PVDF nanofiber mat simultaneously exhibits piezoelectricity and flexibility. In the present study, a comparative analysis of BTO-PDMS composite film and a PVDF nanofiber mat for application to flexible pressure sensors was carried out. First, step-wise electric poling was conducted on these two types of pressure sensors, after which the open-circuit voltage (Voc) was measured under compressive force. The 1.8 V peak-to-peak Voc was measured in a BTO-PDMS composite with a 30 wt.% BTO content that was poled by 10 kV/mm electric field for 15 min. This peak-to-peak Voc of the BTO-PDMS composite increased further to ~ 4 V when it was poled for 24 hr. Unlike the BTO-PDMS composite films, the maximum Voc (1.1 V) was measured in a PVDF nanofiber mat that did not undergo subsequent electric poling. A BTO-PDMS composite film and a PVDF nanofiber mat were fabricated, and the compressive force and strain-rate dependencies of Voc and the short-circuit current (Isc) were investigated. Overall, the Voc and Isc of the BTO-PDMS composite film exceeded those of the PVDF nanofiber mat in a force range of 1 − 25 N and frequency range of 0.5 − 2.0 Hz. However, the Voc and Isc signals from the PVDF nanofiber mat were more stable than those from the BTO-PDMS composite film due to the longer lifetime of the signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.