Abstract

AbstractIn dusty plasma, the overlapping Debye spheres around dust grains produce an attractive force. Shadowing force is exerted between neighboring particles because of mutual distortion of ion or neutral flux to the particles. A comparative study has been made on the role of these two forces on 2D structure of dusty system. Radial distribution function for the particles is a comparative study between the effect of the coupled Yukawa-shadowing potential and the coupled Yukawa-Overlapping Debye Sphere (ODS) potential on 2D dust crystal formation, which has been performed by using molecular dynamics simulation. The structure of the system is investigated by calculating the radial distribution function (g(r)) for different values of Γ, κ and dust number densities nd. It is seen from our study that the Coulomb coupling parameter does not have significant effect on both ODS and shadowing forces. The attractive shadowing force is more dominant for grains with large screening parameter. However, the ODS force becomes dominant with the increasing value of the dust number density. The results for the Yukawa-Shadowing and the ODS potential are also compared with experimental results and a close agreement is obtained for attractive shadowing force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.