Abstract
There remains an urgent need for a prophylactic HIV vaccine. We compared combined MVA and adjuvanted gp140 to sequential MVA/gp140 after DNA priming. We expected Env-specific CD4+ T-cells after DNA and MVA priming, and Env-binding antibodies in 100% individuals after boosting with gp140 and that combined vaccines would not compromise safety and might augment immunogenicity. Forty volunteers were primed three times with DNA plasmids encoding (CN54) env and (ZM96) gag-pol-nef at 0, 4 and 8 weeks then boosted with MVA-C (CN54 env and gag-pol-nef) and glucopyranosyl lipid adjuvant—aqueous formulation (GLA-AF) adjuvanted CN54gp140. They were randomised to receive them in combination at the same visit at 16 and 20 weeks (accelerated) or sequentially with MVA-C at 16, 20, and GLA-AF/gp140 at 24 and 28 weeks (standard). All vaccinations were intramuscular. Primary outcomes included ≥grade 3 safety events and the titer of CN54gp140-specific binding IgG. Other outcomes included neutralization, binding antibody specificity and T-cell responses. Two participants experienced asymptomatic ≥grade 3 transaminitis leading to discontinuation of vaccinations, and three had grade 3 solicited local or systemic reactions. A total of 100% made anti-CN54gp140 IgG and combining vaccines did not significantly alter the response; geometric mean titer 6424 (accelerated) and 6578 (standard); neutralization of MW965.2 Tier 1 pseudovirus was superior in the standard group (82 versus 45% responders, p = 0.04). T-cell ELISpot responses were CD4+ and Env-dominant; 85 and 82% responding in the accelerated and standard groups, respectively. Vaccine-induced IgG responses targeted multiple regions within gp120 with the V3 region most immunodominant and no differences between groups detected. Combining MVA and gp140 vaccines did not result in increased adverse events and did not significantly impact upon the titer of Env-specific binding antibodies, which were seen in 100% individuals. The approach did however affect other immune responses; neutralizing antibody responses, seen only to Tier 1 pseudoviruses, were poorer when the vaccines were combined and while T-cell responses were seen in >80% individuals in both groups and similarly CD4 and Env dominant, their breadth/polyfunctionality tended to be lower when the vaccines were combined, suggesting attenuation of immunogenicity and cautioning against this accelerated regimen.
Highlights
In an era of antiretroviral medication for the treatment and prevention of HIV, concerns around access, toxicity, and escalating cost suggest that a vaccine for HIV is still likely to be the most effective and sustainable way of reducing new infections [1, 2]
100% individuals made strong CN54gp140-specific antibody irrespective of regimen, but combining the vaccines had no detectable impact on the magnitude or specificity of the antibody response as assessed by the recognition of linear peptides
There was no difference in the overall frequency or specificity of T-cell ELISpot responses which were seen in >80% individuals irrespective of group and tended to be CD4+ and specific for Env peptide pools
Summary
In an era of antiretroviral medication for the treatment and prevention of HIV, concerns around access, toxicity, and escalating cost suggest that a vaccine for HIV is still likely to be the most effective and sustainable way of reducing new infections [1, 2]. Heterologous prime boost regimens employing DNA, viral vectors, and/or recombinant proteins have generated robust cellular and humoral responses maximizing breadth and potency while limiting the attenuating effects of vector specific immunity [16,17,18,19,20]. The EuroVacc trials demonstrated that DNA prime, NYVAC boost increased the frequency, magnitude, and breadth of HIV-specific T-cell ELISpot responses [22, 23] and that three DNA priming immunizations were more immunogenic than two [24]. A recent clinical trial comparing different prime boost regimens showed no benefit of DNA priming for Env-specific antibody responses but evidence of an improvement in T-cell responses, overall immunogenicity was lower than seen previously in response to the same DNA and MVA vaccines [25]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.