Abstract

This study deals with modeling and analyzing the performance of greenhouses from the power plant through the heating system to the greenhouse envelope using exergy analysis method, the so-called low exergy or LowEx approach, which has been and still being successfully used in sustainable buildings design, for the first time to the best of the author’s knowledge. For the heating applications, three options are studied with (i) a solar assisted vertical ground-source heat pump greenhouse heating system, (ii) a wood biomass boiler, and (iii) a natural gas boiler, which are driven by renewable and non-renewable energy sources. In this regard, two various greenhouses, the so-called small greenhouse and large greenhouse, considered have heat load rates of 4.15 kW and 7.5 MW with net floor areas of 11.5 m 2 and 7.5 ha, respectively. The overall exergy efficiency values for Cases 1–3 (solar assisted vertical ground-source heat pump, natural gas boiler and wood biomass boiler) of the small greenhouse system decrease from 3.33% to 0.83%, 11.5% to 2.90% and 3.15% to 0.79% at varying reference state temperatures of 0 to 15 °C while those for Cases 1 and 2 (wood biomass and natural gas boilers) of the large greenhouse system decrease from 2.74% to 0.11% and 4.75% to 0.18% at varying reference state temperatures of −10% to 15 °C. The energetic renewability ratio values for Cases 1 and 3 of the small greenhouse as well as Case 1 of the large greenhouse are obtained to be 0.28, 0.69 and 0.39, while the corresponding exergetic renewability ratio values are found to be 0.02, 0.64 and 0.29, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.