Abstract

This study aimed to investigate the release of common monomers from two conventional and two bisphenol A (BPA)-free temporary crown and bridge materials. Cylindrical samples of all materials were prepared (N=90; five samples for each material and cycle of analysis). All samples were immersed in high-performance liquid chromatography (HPLC)-grade water and incubated for 1 h, 12 h, 24 h, and 7 days in an incubation shaker at 37°C and 112rpm. Extraction was performed in accordance with ISO 10993-12. Eluted monomers were detected and quantified by HPLC coupled with ultraviolet-visible spectroscopy and mass spectrometry (HPLC-UV/Vis-MS). Analysis of BPA was performed by HPLC coupled with ultraviolet-visible spectroscopy (HPLC-UV/Vis) and positive results were verified by HPLC-tandem mass spectrometry (HPLC-MS/MS). Neither bisphenol A-glycidyl methacrylate (Bis-GMA) nor BPA was quantifiable in any of the crown and bridge samples investigated in the present study. However, all samples contained triethylene glycol dimethacrylate (TEGDMA) and/or urethane dimethacrylate (UDMA) after 24 h of incubation. Statistical analysis showed that significantly more UDMA was released from the BPA-free materials than from the conventional materials. All concentrations of UDMA measured were below the effective cytotoxic concentrations previously reported. However, for a few materials, especially BPA-free temporary crown and bridge materials, the levels of UDMA were above previously reported potentially harmful concentrations for local cells. As BPA-free materials were introduced as being more biocompatible than materials containing BPA, substitution of Bis-GMA with UDMA should be further investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.