Abstract
The study was initiated to assess the suitability of Ti-6Al-4V as a metal which articulates against Ultra High Molecular Weight (UHMW) polyethylene in total joint applications. The wear surfaces of Ti alloy were prepared to different levels of surface roughness and the effect of various surface chemical treatments were examined. A specially designed annular contact laboratory wear tester was developed to provide the surface loading and articulation. Comparative tests were also performed using 316 LVM stainless steel and Co-Cr-Mo alloy metallic wear components. All annular contact wear tests were performed in mammalian Ringer's solution environments and were evaluated using standard statistical techniques. Scanning electron microscope (SEM) analysis of the wear surfaces indicates the formation of a polyethylene transfer film on all metal surfaces. The surface of the UHMW polyethylene samples after testing was considerably rougher than the original articulating metallic surface; the transfer film on the metal surfaces was responsible for this. It was concluded that Ti-6Al-4V is satisfactory for total joint replacement when used in combination with UHMW polyethylene. Proper surface preparation may allow lower rates of wear than conventional orthopaedic alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.