Abstract

In the manufacturing process of ship propellers, large quantities of grinding chips are generated. These grinding chips result from the finishing of the blade surfaces after the primary casting process of the propeller. The aim of this study was to investigate and compare different preparation processes used to produce chip powders with sufficient powder quality for the additive manufacturing process of directed energy deposition. The preparation of the samples was performed through different sieving, milling and re-melting processes. For the characterization of the prepared samples, powder analysis according to relevant industry standards was carried out. It was found that the re-melting processes result in superior powder quality for additive manufacturing in terms of particle size, morphology, and flowability. For some characteristics, the powder exhibits even better properties than those of commercial powders. Furthermore, the powder properties of the milled samples demonstrate a promising potential for use in additive manufacturing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call