Abstract

The changing climate and the associated future increases in temperature are expected to have impacts on drought characteristics and hydrologic cycle. This paper investigates the projected changes in spatiotemporal characteristics of droughts and their future attributes over the Willamette River Basin (WRB) in the Pacific Northwest U.S. The analysis is performed using two subsets of downscaled CMIP5 global climate models (GCMs) each consisting of 10 models from two future scenarios (RCP4.5 and RCP8.5) for 30years of historical period (1970–1999) and 90years of future projections (2010–2099). Hydrologic modeling is conducted using the Precipitation Runoff Modeling System (PRMS) as a robust distributed hydrologic model with lower computational cost compared to other models. Meteorological and hydrological droughts are studied using three drought indices (i.e. Standardized Precipitation Index, Standardized Precipitation Evapotranspiration Index, Standardized Streamflow Index). Results reveal that the intensity and duration of hydrological droughts are expected to increase over the WRB, albeit the annual precipitation is expected to increase. On the other hand, the intensity of meteorological droughts do not indicate an aggravation for most cases. We explore the changes of hydrometeolorogical variables over the basin in order to understand the causes for such differences and to discover the controlling factors of drought. Furthermore, the uncertainty of projections are quantified for model, scenario, and downscaling uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.