Abstract

In the construction industry, there are several methods which have been used to improve the capacity and effectiveness of structural concrete structures. Engineers can extend the life of the structures by implementing strengthening techniques. One of the techniques to strengthen columns and beams is the use of jacketing. The strength of the structural members is enhanced through the surface structural bonding of materials such as Carbon-Fibre Reinforced Polymer (CFRP), Glass-Fibre Reinforced Polymer (GFRP), ferrocement, steel angles, steel plates, wire mesh and so on. In this study, 18 reinforced concrete short columns of cross-sectional size 60 mm × 60 mm and 500 mm height were cast using concrete grade 30 MPa. The columns were subjected to compressive axial loads till failure. Moreover, the damaged columns were strengthened using three structural strengthening techniques namely, Reinforced Concrete Jacketing (RCJ), Reinforced Concrete Wire Mesh Jacketing (RCWJ) and, Steel Jacketing (SJ). The columns strengthened using RCJ and RCWJ had a cross section of 120 mm × 120 mm while SJ had a cross section of 66 mm × 66 mm. Six different configurations were used for each technique. The experimental investigations showed a minimum increase of 48.0%, 48.7% and 35.2% in the axial compressive strength when strengthened using RCJ, RCWJ and SJ respectively. Among the three strengthening techniques, SJ was determined to be the effective technique on considering structural design, time production and costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call