Abstract

Wireless video sensor networks (WVSNs) have drawn significant attention in recent years due to the advent of low-cost miniaturized cameras, which makes it feasible to realize large-scale WVSNs for a variety of applications including security surveillance, environmental tracking, and health monitoring. However, the conventional video coding paradigms are not suitable for WVSNs due to resource constraints such as limited computation power, battery energy, and network bandwidth. In this paper, we evaluated and analyzed the performance of video codecs based on emerging video coding paradigms such as distributed video coding and distributed compressive video sensing for multihop WVSNs. The main objective of this work was to provide an insight into the computational (encoding/decoding) complexity, energy consumption, node and network lifetime, processing and memory requirements, and the quality of reconstruction of these video codecs. Based on the findings, this paper also provides some guidelines for the selection of appropriate video codecs for a given WVSN application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.