Abstract

Low dimensional carbon allotropes are the most used materials in composites. In addition, when magnetic nanostructures are assembled with carbon-based materials, a versatile material for building sensitive electrodes is achieved. Here, we propose a route to obtain magnetic composites based on both graphene oxide and reduced graphene oxide with permalloy nanowires. A comparative analysis of the electrochemical performance for such composites reveals that a relatively small amount of magnetic nanowires leads to an increased conductivity with respect to that of the pristine matrix, being such effect more pronounced for the graphene oxide-based composite. Therefore, the presence of permalloy nanostructures plays a determinant role in the conductive properties of graphene oxide-based materials, providing an attractive alternative for sensing purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.