Abstract
Abstract Background The highly infectious coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2, the seventh coronavirus. It is the longest pandemic in recorded history worldwide. Many countries are still reporting COVID-19 cases even in the fifth year of its emergence. Objective The performance of various machine learning (ML) and deep learning (DL) models was studied for image-based classification of the lungs infected with COVID-19, pneumonia (viral and bacterial), and normal cases from the chest X-rays (CXRs). Methods The K-nearest neighbour and logistics regression as the two ML models, and Visual Geometry Group-19, Vision transformer, and ConvMixer as the three DL models were included in the investigation to compare the brevity of the detection and classification of the cases. Results Among the investigated models, ConvMixer returned the best result in terms of accuracy, recall, precision, F1-score and area under the curve for both binary as well as multiclass classification. The pre-trained ConvMixer model outperformed the other four models in classifying. As per the performance observations, there was 97.1% accuracy for normal and COVID-19 + pneumonia-infected lungs, 98% accuracy for normal and COVID-19 infected lungs, 82% accuracy for normal + bacterial + viral infected lungs, and 98% accuracy for normal + pneumonia infected lungs. The DL models performed better than the ML models for binary and multiclass classification. The performance of these studied models was tried on other CXR image databases. Conclusion The suggested network effectively detected COVID-19 and different types of pneumonia by using CXR imagery. This could help medical sciences for timely and accurate diagnoses of the cases through bioimaging technology and the use of high-end bioinformatics tools.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have