Abstract
This paper presents a numerical study conducted to analyze the aerodynamic performance of supersonic missiles consisting of a cylindrical body and four flat-plate rear fins arranged uniformly, equipped with conical and ogive heads. Computational Fluid Dynamics (CFD) simulations were performed using the ANSYS Fluent 17.1 solver, along with the Gambit grid generation software. The objective was to compare the aerodynamic characteristics of these two head designs in terms of drag, lift, and stability at supersonic speeds. Various flow parameters, including Mach number and angle of attack, were investigated to comprehensively assess the performance of the missile configurations. The results indicate clear differences in the aerodynamic behavior of conical and ogive heads. Specifically, there was a 2–11 percent increase in the lift coefficient of the conical heads compared to the ogive heads, and an increase in the drag coefficient of both conical and ogive heads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.