Abstract
Google Play Store is a popular distribution channel with millions of applications. WhatsApp is the most downloaded communication application on Play Store. A few months ago, WhatsApp changed its privacy policy, triggering a wave of user reviews outrage. Privacy is essential in the application; users are worried about their data security and privacy. A computational system must be required to analyze the user’s reviews for WhatsApp authority to make better policies. This study aims to develop a deep learning-based model for automatically assessing reviews that can be adapted for future data analysis. We proposed a deep learning methodology by using Aspect-based sentiment analysis (ABSA) utilizing the communication app reviews scraped from the Google play store using the Google Play scrapper application. This study uses the text mining technique for ABSA on the user’s reviews. For Topic extraction, we have used Latent Dirichlet Allocation (LDA) and the deep learning method Long Short-Term Memory (LSTM) for topic classification. The results show that our proposed model gives us a promising outcome with 90% accuracy by using the LSTM model. WhatsApp authority can use the results to optimize communication applications by adding more efficient features and updating them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.