Abstract

Harmful algal blooms are an annual phenomenon that cause environmental damage, economic losses, and disease outbreaks. A fundamental solution to this problem is still lacking, thus, the best option for counteracting the effects of algal blooms is to improve advance warnings (predictions). However, existing physical prediction models have difficulties setting a clear coefficient indicating the relationship between each factor when predicting algal blooms, and many variable data sources are required for the analysis. These limitations are accompanied by high time and economic costs. Meanwhile, artificial intelligence and deep learning methods have become increasingly common in scientific research; attempts to apply the long short-term memory (LSTM) model to environmental research problems are increasing because the LSTM model exhibits good performance for time-series data prediction. However, few studies have applied deep learning models or LSTM to algal bloom prediction, especially in South Korea, where algal blooms occur annually. Therefore, we employed the LSTM model for algal bloom prediction in four major rivers of South Korea. We conducted short-term (one week) predictions by employing regression analysis and deep learning techniques on a newly constructed water quality and quantity dataset drawn from 16 dammed pools on the rivers. Three deep learning models (multilayer perceptron, MLP; recurrent neural network, RNN; and long short-term memory, LSTM) were used to predict chlorophyll-a, a recognized proxy for algal activity. The results were compared to those from OLS (ordinary least square) regression analysis and actual data based on the root mean square error (RSME). The LSTM model showed the highest prediction rate for harmful algal blooms and all deep learning models out-performed the OLS regression analysis. Our results reveal the potential for predicting algal blooms using LSTM and deep learning.

Highlights

  • Harmful algal blooms are a phenomenon in which the water in rivers and lakes turns dark green because of excessive algal growth [1]

  • biological oxygen demand (BOD) is an important parameter for assessing water pollution; the higher the BOD concentration, the higher the increase in organic matter and chlorophyll-a, as shown by a previous study finding that the correlation between

  • Our regression analysis indicated a positive correlation between dissolved oxygen (DO), BOD, and COD, in accordance with previous research

Read more

Summary

Introduction

Harmful algal blooms are a phenomenon in which the water in rivers and lakes turns dark green because of excessive algal growth [1]. They can affect areas used as water sources, potentially causing harm to humans and animal, e.g., acute or chronic liver damage when the contaminated water is ingested [2,3]. The effects of harmful algal blooms on rivers and lakes have been experienced and reported worldwide, including the large-scale death of fish [5]. The 11 US health and environment departments funded by the National Center for Environmental. Res. Public Health 2018, 15, 1322; doi:10.3390/ijerph15071322 www.mdpi.com/journal/ijerph

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call