Abstract

The monitoring and rejection of voltage and current harmonics in power electronics applications such as power quality conditioners or distributed generation systems require correct estimation algorithms especially if the harmonic amplitudes are time varying. Power signal decomposition in multiple synchronous rotating reference frames (MSRFs) is considered one of the best solutions. The most commonly employed implementations of this signal transformation are based on phase-locked loops (PLLs), recursive discrete Fourier transforms (RDFT), or discrete Kalman filtering (DKF). In this paper, a rigorous analysis of the performance of these implementations has been carried out. Complete tests have been performed to evaluate the computational burden, the frequency domain response, and the tolerance to low frequency amplitude variations. The results make it possible to select the proper method depending on the requirements of each application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.