Abstract
BackgroundNonhost resistance (NHR) protects plants against a vast number of non-adapted pathogens which implicates a potential exploitation as source for novel disease resistance strategies. Aiming at a fundamental understanding of NHR a global analysis of transcriptome reprogramming in the economically important Triticeae cereals wheat and barley, comparing host and nonhost interactions in three major fungal pathosystems responsible for powdery mildew (Blumeria graminis ff. ssp.), cereal blast (Magnaporthe sp.) and leaf rust (Puccinia sp.) diseases, was performed.ResultsIn each pathosystem a significant transcriptome reprogramming by adapted- or non-adapted pathogen isolates was observed, with considerable overlap between Blumeria, Magnaporthe and Puccinia. Small subsets of these general pathogen-regulated genes were identified as differentially regulated between host and corresponding nonhost interactions, indicating a fine-tuning of the general pathogen response during the course of co-evolution. Additionally, the host- or nonhost-related responses were rather specific for each pair of adapted and non-adapted isolates, indicating that the nonhost resistance-related responses were to a great extent pathosystem-specific. This pathosystem-specific reprogramming may reflect different resistance mechanisms operating against non-adapted pathogens with different lifestyles, or equally, different co-option of the hosts by the adapted isolates to create an optimal environment for infection. To compare the transcriptional reprogramming between wheat and barley, putative orthologues were identified. Within the wheat and barley general pathogen-regulated genes, temporal expression profiles of orthologues looked similar, indicating conserved general responses in Triticeae against fungal attack. However, the comparison of orthologues differentially expressed between host and nonhost interactions revealed fewer commonalities between wheat and barley, but rather suggested different host or nonhost responses in the two cereal species.ConclusionsTaken together, our results suggest independent co-evolutionary forces acting on host pathosystems mirrored by barley- or wheat-specific nonhost responses. As a result of evolutionary processes, at least for the pathosystems investigated, NHR appears to rely on rather specific plant responses.
Highlights
Nonhost resistance (NHR) protects plants against a vast number of non-adapted pathogens which implicates a potential exploitation as source for novel disease resistance strategies
In this study we investigate the early responses of wheat and barley to adapted and non-adapted isolates of the pathosystems Blumeria sp., Magnaporthe sp. and Puccinia sp
A major goal of our study was the examination of transcriptional reprogramming in wheat and barley towards three fungal pathosystems (Blumeria, Magnaporthe and Puccinia), comparing responses to adapted and non-adapted isolates
Summary
Nonhost resistance (NHR) protects plants against a vast number of non-adapted pathogens which implicates a potential exploitation as source for novel disease resistance strategies. Aiming at a fundamental understanding of NHR a global analysis of transcriptome reprogramming in the economically important Triticeae cereals wheat and barley, comparing host and nonhost interactions in three major fungal pathosystems responsible for powdery mildew In host interactions basal resistance is regarded as part of the PAMP-Triggered Immunity (PTI) response, and if not suppressed by effectors can remain effective against an adapted pathogen as a quantitative, but relatively stable resistance [7, 8]. Effector-Triggered Immunity (ETI) is a qualitative resistance, usually based on single major resistance (R-) genes acting upon effector, in this case termed avirulence factor, recognition. R-gene resistance can be broken relatively by pathogen variants expressing mutated target effectors (virulence factor) [9]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have