Abstract
In treating prostate cancer, distinguishing alpha and beta therapies is vital for efficient radiopharmaceutical delivery. Our study introduces a 3D image-based spatiotemporal computational model that utilizes MRI-derived images to evaluate the efficacy of 225Ac-PSMA and 177Lu-PSMA therapies. We examine the impact of tumor size, diffusion, interstitial fluid pressure (IFP), and interstitial fluid velocity (IFV) on the absorbed doses. An MRI-based geometric model of the tumor and its surrounding environment is initially developed. Subsequently, COMSOL Multiphysics software is utilized to solve convection-diffusion-reaction equations and conduct numerical analyses of blood pressure distribution. This computational methodology provides valuable insights into interstitial fluid patterns and the spatiotemporal distribution of extracellular and intracellular concentrations of 225Ac-PSMA and 177Lu-PSMA. In addition, our study investigates the impacts of increasing tumor size on absorbed doses and mechanisms involved in radiopharmaceutical transport and delivery. Larger tumors have diminished absorbed doses, highlighting the need for customized treatments according to tumor size. Diffusion significantly influences the transport and delivery of radiopharmaceuticals. Additionally, alpha therapy was observed to consistently yield higher absorbed doses within the tumor than beta therapy. This study reveals the complex interplay between radiopharmaceutical properties, the tumor microenvironment, and treatment outcomes. It highlights the potential of 225Ac-PSMA in prostate cancer treatment, advocating for personalized treatment strategies tailored to the specific characteristics of each patient and their tumor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.