Abstract
Adsorptive removal of aromatic compounds from aqueous solutions by polymeric adsorbents has attracted many concerns in recent years. A comparative adsorption study including equilibria, kinetics and column dynamics of β-naphthol from aqueous solutions was carried out using two hypercrosslinked polymeric adsorbents (HJ-1 and TEPA) we developed and two commercial polymeric adsorbents (XAD-4 and XAD-7). The adsorption isotherms could be well described by the Freundlich equation, and the adsorption equilibrium capacities of β-naphthol followed an order of qe(TEPA)>qe(HJ-1)>qe(XAD-4)>qe(XAD-7). The isosteric adsorption enthalpies on HJ-1 and TEPA decreased with increasing adsorption fractional loading, while a constant enthalpy was observed for XAD-4 and XAD-7, implying that HJ-1 and TEPA had a heterogeneous surface while XAD-4 and XAD-7 possessed a homogenous surface. The surface energetic heterogeneity of HJ-1 and TEPA could be well characterized by the Do’s model. The adsorption kinetics were fitted by both pseudo-first-order and pseudo-second-order rate equations, and the intra-particle diffusion was found to be the rate-limiting step. The adsorption breakthrough data were well correlated by the Thomas and Clark models, and the dynamic capacities for TEPA, HJ-1, XAD-4 and XAD-7 adsorbents were calculated to be 341.7, 321.6, 268.0 and 173.8mg/g dry resin, which were within 90% of the corresponding equilibrium capacities obtained in the batch experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.