Abstract
We deal with a nonconvex and nonlocal variational problem coming from thin-film micromagnetics. It consists in a free-energy functional depending on two small parameters ε and η and defined over vector fields m:Ω⊂R2→S2 that are tangent at the boundary ∂Ω. We are interested in the behavior of minimizers as ε,η→0. They tend to be in-plane away from a region of length scale ε (generically, an interior vortex ball or two boundary vortex balls) and of vanishing divergence, so that S1-transition layers of length scale η (Néel walls) are enforced by the boundary condition. We first prove an upper bound for the minimal energy that corresponds to the cost of a vortex and the configuration of Néel walls associated to the viscosity solution, so-called Landau state. Our main result concerns the compactness of vector fields {mε,η}ε,η↓0 of energies close to the Landau state in the regime where a vortex is energetically more expensive than a Néel wall. Our method uses techniques developed for the Ginzburg–Landau type problems for the concentration of energy on vortex balls, together with an approximation argument of S2-vector fields by S1-vector fields away from the vortex balls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.