Abstract

A nonlocal variational problem modelling phase transitions is studied in the framework of Young measures. The existence of global minimisers among functions with internal layers on an infinite tube is proved by combining a weak convergence result for Young measures and the principle of concentration-compactness. The regularity of such global minimisers is discussed, and the nonlocal variational problem is also considered on asymptotic tubes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.