Abstract

We report the design, fabrication, and preliminary characterization of a compact X-ray generator for improved X-ray absorption imaging that uses a nanostructured field emission cathode (FEC) as the electron source and a microstructured transmission anode as the X-ray generating element. FECs consume less power, respond faster, and tolerate lower vacuum than thermionic cathodes used in conventional X-ray generators. The use of a transmission anode, instead of a conventional reflection anode, allows filtering of the background radiation (brems strahlung) while allowing efficient generation of X-rays at lower voltages by exciting atomic shell transitions, resulting in emission of X-rays with narrow spectral linewidth for sharper imaging of biological tissue. The fabricated FEC contains arrays of self-aligned, gated field emitters that turn on at bias voltages under 30 V and transmit 99.5% of the electrons to the anode. The FEC emits a maximum current of 1.2 μA per field emitter (588 μA total array current) at a bias voltage of 85 V. A facility is built and tested to generate X-rays with an FEC and a transmission anode. Using the facility, we obtained an X-ray absorption image of an ex-vivos ample that clearly shows softtissue and fine bone structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.