Abstract

A comprehensive data set of ecstasy samples containing MDMA (N-methyl-3,4-methylenedioxyamphetamine) and MDA (3,4-methylenedioxyamphetamine) seized by the Brazilian Federal Police was characterized using spectral data obtained by a compact, low-cost, near-infrared Fourier-transform based spectrophotometer. Qualitative and quantitative characterization was accomplished using soft independent modeling of class analogy (SIMCA), linear discriminant analysis (LDA) classification, discriminating partial least square (PLS-DA), and regression models based on partial least square (PLS). By applying chemometric analysis, a protocol can be proposed for the in-field screening of seized ecstasy samples. The validation led to an efficiency superior to 96 % for ecstasy classification and estimating total actives, MDMA, and MDA content in the samples with a root mean square error of validation of 4.4, 4.2, and 2.7 % (m/m), respectively. The feasibility and drawbacks of the NIR technology applied to ecstasy characterization and the compromise between false positives and false negatives rate achieved by the classification models are discussed and a new approach to improve the classification robustness was proposed considering the forensic context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.