Abstract
Ultraintense laser-matter interactions provide a unique source of temporally short, broad spectrum electrons, which may be utilized in many varied applications. One such, which we are pursuing, is as part of a diagnostic to trace magnetic field lines in a magnetically confined fusion device. An essential aspect of this scheme is to have a detailed characterization of the electron angular and energy distribution. To this effect we designed and constructed a compact electron spectrometer that uses permanent magnets for electron energy dispersion and over 100 scintillating fibers coupled to a 1024×1024 pixel charge coupled device as the detection system. This spectrometer has electron energy coverage from 10 keV to 60 MeV. We tested the spectrometer on a high intensity (1017–1021 W/cm2) short pulse (<100 fs) laser, JanUSP, at Lawrence Livermore National Laboratory using various solid targets. The details of the spectrometer and the experimental results will be reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.