Abstract

Compared with silicon and silicon carbide devices, the unique electrical and structural characteristics of gallium nitride high electron mobility transistors (GaN HEMTs) make them have different requirements for power module integration. This article proposes a novel integration scheme for the high-voltage lateral GaN HEMT dies without bonding wires. Based on the proposed integration scheme, a compact 650 V/30 A GaN power module with low parasitic parameters and high thermal performance is designed. The GaN dies are sandwiched between two ceramic substrates to improve thermal performance and ensure consistent thermal expansion coefficients. The multiple copper layer structure is used to increase wiring flexibility to reduce parasitic parameters. The design of gate and power loop layouts is discussed, and the common-mode (CM) capacitance is optimized. A comprehensive reliability evaluation is also carried out for this integration scheme. Finally, a double-sided cooling 650 V/30 A full-bridge GaN power module with 2.4 cm×1.3 cm×0.17 cm is fabricated. The thermal resistance is reduced by 30%–48% compared with the conventional single-sided cooling module. The power loop and gate loop inductances are reduced to 0.94 nH and 2 nH, respectively, and the CM capacitance is limited to 2.5 pF. The maximum d <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">v</i> /d <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</i> of the drain–source voltage is high as 150 V/ns with only 10% overshoot. Based on the power module, a 3.3-kW two-phase interleaved buck converter is developed. It has 820 W/in <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> power density and 98.85% peak efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.