Abstract
A compact slot antenna with an overall dimension of 30 × 30 × 1.6 mm3 is proposed for dual band applications. The radiating element is a hexagonal shape patch which protrudes from a Co-Planar Waveguide (CPW) feed into a step shape slot. The slot is basically rectangular in shape and is extended by inserting rectangular cuts of different sizes on the ground plane around it. The ultrawide impedance bandwidth is achieved using asymmetric feed line along with extended rectangular cuts around the slot. For realizing the second band for personal communication system applications (near 1.9 GHz), a metallic stub of quarter wave length is attached at the top of the slot. The measured impedance bandwidth (for S11 < −10 dB) is 110 MHz (1.86–1.97 GHz) for the first band and 9 GHz (3.0–12.0 GHz) for the second band. The antenna is further characterized by omnidirectional radiation patterns in the H-plane, dumb-bell shape radiation patterns in the E-plane and a peak gain of 3–5 dBi over the ultrawideband. All the measured results are found to be in good agreement with the simulated results. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:243–254, 2015.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of RF and Microwave Computer-Aided Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.