Abstract

In this article, a microwave (MW)/millimeter wave (MMW) aperture-sharing antenna is proposed. The antenna is constructed using two orthogonal columns of grounded vias from a 3.5 GHz slot-loaded half-mode substrate-integrated waveguide (HMSIW) antenna. These vias are reused to create two sets of 1 × 4 MMW substrate-integrated dielectric resonator antenna (SIDRA) arrays. With this proposed partial structure reuse strategy, the MW antenna and MMW arrays can be integrated in a shared-aperture manner, improving space utilization and enabling dual-polarized beam steering capability in the MMW band, which is highly desirable for multiple-input multipleoutput (MIMO) applications. The integrated antenna prototype was manufactured and measured for verification. The 3.5 GHz antenna has a relative bandwidth of 3.4% (3.44-3.56 GHz) with a peak antenna gain of 5.34 dBi, and the 28 GHz antenna arrays cover the frequency range of 26.5-29.8 GHz (11.8%) and attain a measured peak antenna gain of 11.0 dBi. Specifically, the 28 GHz antenna arrays can realize dual-polarization and ±45° beam steering capability. The dual-band antenna has a very compact structure, and it is applicable for 5G mobile communication terminals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.