Abstract

In this brief, the design principles and experimental demonstration of a compact full adder along with a reprogrammable 4-input logic gate are presented. The proposed solution for implementation of digital circuits is based on a clamped–clamped micro-beam resonator with multiple split electrodes, in which the logic inputs tune the resonance frequency of the beam. This technique enables re-programmability during operation, and reduces the complexity of the digital logic design significantly; as an example, for a 64-bit adder, only 128 micro-resonators are required, compared to more than 1500 transistors for standard complementary metal–oxide–semiconductor (CMOS) architectures. We also show that an optimized simulated micro-resonator-based full adder is 45 times smaller than a CMOS mirror adder in 65-nm technology. While the energy consumption of this early generation of micro-resonator logic gates is higher than the CMOS solutions, we show that by careful device optimization and shrinking of the dimensions, femtojoules energy consumption and MHz operation, required by Internet of Things applications, are attainable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call