Abstract
Background and PurposeWith the availability of commercial electronic portal imaging detector-based in vivo dosimetry (EPID-based IVD) solutions, many radiotherapy departments are adopting this technology. However, comprehensive commissioning guidance is lacking. This study aims to provide a protocol for testing the accuracy and sensitivity of EPID-based IVD systems. Material and methodsThe protocol was tested across four institutions using two different systems. Accuracy was evaluated with homogeneous slab phantoms using different square regular fields, and clinical plans in a CIRS lung phantom. Multiple forward and back-projected algorithm implementations were assessed for different energies. Sensitivity analysis in the lung phantom examined responses to setup errors, anatomical variations, and delivery errors. ResultsIn homogeneous phantoms, over 85 % of pixels passed the 5 %/2mm gamma criteria, except for the 2x2 cm2 field. In the lung phantom, all systems and implementations achieved over 95 %-pixel pass rates at the 2 %/2mm criterion for volumetric modulated arc therapy (VMAT) plans. For conformal radiation therapy (3DCRT) plans, one system implementation showed poor accuracy, with over 90 % agreement only at the 5 %/2mm criterion. Considering all systems and implementations, average sensitivity and specificity for CRT plans ranged from 0.92 and 0.42 (at 2 %/2mm) to 0.71 and 0.52 (at 5 %/2mm), while for VMAT plans ranged from 0.41 and 0.81 (at 2 %2mm) to 0.37 and 0.81 (at 5 %/2mm). ConclusionWe successfully developed a protocol to commission EPID IDV systems. It was found that not all systems and implementations achieved satisfactory accuracy and sensitivity, emphasising the need for thorough commissioning and benchmarking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.