Abstract

In fluid-structure interaction (FSI) problems, accuracy of the data transfer between fluid-structure interfaces is mainly attributed to the element type and discretization density of grids in both fluid and structure domains. To remedy the inaccuracy caused by the prevalently applied solo elemental node interpolation strategy, a novel interpolation method is proposed in the present study. The approach is based on the radial basis function and introduces a weight coefficient through which the centroid and nodes of an element are joined. This way, the interpolation will be conducted in accordance to a weighted summation of both terms. Before it is applied to practice relevant engineering examples, the validity of the formulated approach is first examined by simple 2D and further 3D case studies. Studies have clearly illustrated that, compared to pure element centroid or nodes based interpolation schemes, the established approach is insensitive to the pressure distribution. Meanwhile, in these cases the influence of selected basis functions and mesh densities have been examined in detail. Based on the knowledge gained from these case studies, it further investigated a problem emerged from high-speed trains in which the CFD simulation is validated by the field experiment and the task is to transfer data from the fluid domain to the structure domain. Result of the study shows that for the high speed train model considered which has complicated non-matching grids, the accuracy of data transfer in fluid-structure interaction is highly improved and the maximum of global relative error achieves 2.62%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call