Abstract

For numerical simulations of fluid-structure interaction (FSI) problems, discretized meshes of different computational domains do not have to match at the common interface. Data transfer via the interface is therefore significantly affecting the accuracy of FSI. Implementing data transfer between such pairwise non-matching meshes is challenging, as it is highly desirable to yield numerical accuracy using methods such as interpolation or projection. To further improve the data transfer accuracy for mesh-based approaches, this study proposes a feature points-based combined interpolation method by means of Simpson's rule, with which an appropriate weighting coefficient is determined. Moreover, radial basis function (RBF) is employed to perform the interpolation of scattered data points. The proposed method is validated by a series of examples involving various non-matching mesh configurations in FSI problems. The numerical findings indicate that this method can further improve data transfer accuracy. Even for a critical case with large mesh ratio at the interface it can provide satisfying results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.