Abstract

Several studies have shown that cell-mediated immune responses play a crucial role in controlling viral replication. As such, a candidate SARS vaccine should elicit broad CD8+ T-cell immune responses. Several groups of mice were immunized alone or in combination with SARS-nucleocapsid immunogen. A high level of specific SARS-CD8+ T-cell response was demonstrated in mice that received DNA encoding the SARS-nucleocapsid, protein and XIAP as an adjuvant. We also observed that co-administration of a plasmid expressing nucleocapsid, recombinant protein and montanide/CpG induces high antibody titers in immunized mice. Moreover, this vaccine approach merits further investigation as a potential candidate vaccine against SARS.

Highlights

  • The SARS epidemic had a high mortality rate as well as a huge economic impact worldwide

  • Cell culture Chinese Hamster Ovary (CHO) cells were grown at 37°C, 5% CO2 in Iscove's Modified Dulbecco's Medium

  • Construction of the DNA vectors and expression of SARSnucleocapsid protein in mammalian and bacteria cells To increase the potency of the specific immune response, the full-length NC was amplified by RT-PCR and ligated into plasmid pVAX-1 under the control of the human cytomegalovirus promoter

Read more

Summary

Introduction

The SARS epidemic had a high mortality rate as well as a huge economic impact worldwide. The SARS-CoV is a singlestranded RNA virus that has been identified as a new type of coronavirus. Previous studies in other coronavirus members suggest that this protein is highly immunogenic and could be a good target for the design of an effective vaccine [7,8,9,10]. The expression of NC in CHO cells led to the observation that this protein folds spontaneously into viral-like particles (VLPs). These particles are effectively incorporated at several stages of the virus life cycle, including assembly, budding from cells, and receptor-binding leading to membrane fusion. The viral particles present antigens (page number not for citation purposes)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.