Abstract
The electrochemical reduction of CO2 (eCO2R) is a promising approach for converting CO2 into valuable chemicals and fuels using renewable energy sources. We investigated the mechanism of eCO2R for a small Cu8 cluster placed on SnO2 containing O vacancies using density functional theory and predicted current density and selectivity by microkinetics simulations within the computational hydrogen electrode model. Low and high H coverages were modeled by Cu8/SnO2-x and Cu8H6/SnO2-x models, using statistical methods to identify their most stable structures. Different CO2 adsorption modes on Cu8/SnO2-x and Cu8H6/SnO2-x surface models, all containing an O vacancy, resulted in distinct reaction pathways, leading to either HCOOH or CO. The preferred formation of HCOOH occurred upon CO2 adsorption on an O vacancy on the Cu8H6/SnO2-x surface, followed by sequential hydrogenation to HCOO and HCOOH. Adsorption of CO2 on Cu8/SnO2-x opened a facile pathway to CO. Electronic structure analysis revealed that differences in charge donation of Cu to the antibonding orbitals of CO2 can explain the predicted selectivity differences. The preferred adsorption mode of CO2 is bidentate at the Cu-SnO2-x interface. Our findings emphasize the role of H coverage on Cu on the selectivity of eCO2R for Cu/SnOx catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.