Abstract
Selecting residual generators for detecting and isolating faults in a system is an important step when designing model-based diagnosis systems. However, finding a suitable set of residual generators to fulfill performance requirements is complicated by model uncertainties and measurement noise that have negative impact on fault detection performance. The main contribution is an algorithm for residual selection that combines model-based and data-driven methods to find a set of residual generators that maximizes fault detection and isolation performance. Based on the solution from the residual selection algorithm, a generalized diagnosis system design is proposed where test quantities are designed using multivariate residual information to improve detection performance. To illustrate the usefulness of the proposed residual selection algorithm, it is applied to find a set of residual generators to monitor the air path through an internal combustion engine.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have